What is Pearson correlation used for?
Pearson’s correlation coefficient is the test statistics that measures the statistical relationship, or association, between two continuous variables. It is known as the best method of measuring the association between variables of interest because it is based on the method of covariance.
How do you know when to use Spearman or Pearson?
The Pearson correlation evaluates the linear relationship between two continuous variables. The Spearman correlation coefficient is based on the ranked values for each variable rather than the raw data. Spearman correlation is often used to evaluate relationships involving ordinal variables.
When would you use a correlation coefficient?
In summary, correlation coefficients are used to assess the strength and direction of the linear relationships between pairs of variables. When both variables are normally distributed use Pearson’s correlation coefficient, otherwise use Spearman’s correlation coefficient.
How do you interpret Pearson’s r?
Pearson’s r can range from -1 to 1. An r of -1 indicates a perfect negative linear relationship between variables, an r of 0 indicates no linear relationship between variables, and an r of 1 indicates a perfect positive linear relationship between variables.
What if the R value is negative?
A negative r values indicates that as one variable increases the other variable decreases, and an r of -1 indicates that knowing the value of one variable allows perfect prediction of the other. A correlation coefficient of 0 indicates no relationship between the variables (random scatter of the points).
What is the null hypothesis for a Pearson correlation?
For a product-moment correlation, the null hypothesis states that the population correlation coefficient is equal to a hypothesized value (usually 0 indicating no linear correlation), against the alternative hypothesis that it is not equal (or less than, or greater than) the hypothesized value.