How do you do a cluster analysis?
The hierarchical cluster analysis follows three basic steps: 1) calculate the distances, 2) link the clusters, and 3) choose a solution by selecting the right number of clusters. First, we have to select the variables upon which we base our clusters.
What is the best clustering algorithm?
We shall look at 5 popular clustering algorithms that every data scientist should be aware of.
- K-means Clustering Algorithm.
- Mean-Shift Clustering Algorithm.
- DBSCAN – Density-Based Spatial Clustering of Applications with Noise.
- EM using GMM – Expectation-Maximization (EM) Clustering using Gaussian Mixture Models (GMM)
Why do we use K-means clustering?
The K-means clustering algorithm is used to find groups which have not been explicitly labeled in the data. This can be used to confirm business assumptions about what types of groups exist or to identify unknown groups in complex data sets.
What are the advantages and disadvantages of K means clustering?
K-Means Clustering Advantages and Disadvantages. K-Means Advantages : 1) If variables are huge, then K-Means most of the times computationally faster than hierarchical clustering, if we keep k smalls. 2) K-Means produce tighter clusters than hierarchical clustering, especially if the clusters are globular.
What is minimum support and confidence in Apriori algorithm?
The minimum support and minimum confidence are set by the users, and are parameters of the Apriori algorithm for association rule generation. These parameters are used to exclude rules in the result that have a support or a confidence lower than the minimum support and minimum confidence respectively.
Where can you use association rule based algorithms?
It is based on different rules to discover the interesting relations between variables in the database. The association rule learning is one of the very important concepts of machine learning, and it is employed in Market Basket analysis, Web usage mining, continuous production, etc.